AVANCES EN ASMA BRONQUIAL

Estrategia terapéutica para prevenir la remodelación de las vías aéreas

EDGARDO CARRASCO C.*

THERAPEUTIC STRATEGY TO PREVENT AIRWAYS REMODELING IN ASTHMA

Airways remodeling in asthma results in an increased thickness of airways walls, which in turns explains its association to an incomplete reversibility of airflow obstruction. In asthma has been observed that airways inflammation is an important contributor to both airways remodeling and irreversibility of airways obstruction. Epidemiological evidences that support the existance of airways remodeling in asthmatics are reviewed. As it was showed by the START study, inhaled steroid therapy to prevent airways remodeling in asthma should be iniciated at an early phase of the disease. Global iniciative for asthma -GINA- has proposed an early intervention in asthma with inhaled corticosteroids to prevent airways remodeling and its functional effects.

Key words: airways remodeling; asthma; inhaled corticosteroids.

RESUMEN

La remodelación de las vías aéreas en el asma da como resultado un engrosamiento de las vías aéreas, lo cual a su vez explica su asociación con una reversibilidad incompleta de la obstrucción al flujo aéreo. Se ha observado en asma que la inflamación es un contribuyente importante tanto a la remodelación de las vías aéreas como a la irreversibilidad de su obstrucción. En este artículo se revisan las evidencias epidemiológicas que apoyan la existencia de remodelación de vías aéreas en asmáticos. La administración de esteroides inhalados para prevenir la remodelación de las vías aéreas en el asma debe ser iniciada en una fase precoz de esta enfermedad, como fue demostrado en el estudio START. La Iniciativa Global para el Asma -GINA- ha propuesto una intervención precoz en asma con corticoesteroides inhalados para prevenir la remodelación de vías aéreas y sus efectos funcionales.

INTRODUCCIÓN

La existencia de un componente irreversible en el Asma bronquial, que se identificó a detectar una falta de respuesta funcional completa (obstrucción residual de las vías aéreas), luego del uso adecuado de broncodilatadores y esteroides, tanto en adultos (Brown et al.) como niños (Grenough et al.), llevó al concepto que esta condición se debía a un proceso de remodelación, asociado a daño del epitelio bronquial e inflamación de las vías aéreas.

La remodelación es un proceso heterogéneo que se inicia con un daño del epitelio, que produce un cambio en el depósito de tejido colágeno y glicoproteínas en la región subepitelial y matriz extracelular, que lleva a una alteración profunda de la estructura de toda la vía aérea, con hiperтроfia e hiperplasia del músculo liso, aumento e hiperfunción de las células caliciformes.

* Departamento de Medicina, Facultad de Medicina, Universidad de Chile e Instituto Nacional del Tórax. Conferencia pronunciada en el Curso Internacional de Asma Bronquial, Instituto Nacional del Tórax. Santiago, julio 2003.
y glándulas mucosas, a lo que se agrega un proceso de angiogénesis, con aumento y mayor permeabilidad de los vasos sanguíneos\(^3\).

El resultado final es un aumento del grosor de las paredes de las vías aéreas, que se hacen menos distensibles y explican su irreversibilidad funcional. A este resultado contribuye la inflamación de las vías aéreas, y así se ha visto que a mayor grado y duración de ésta, mayor será la remodelación y la irreversibilidad\(^4\).

Evidencias epidemiológicas que apoyan la existencia de la remodelación de las vías aéreas

Las evidencias de una declinación acelerada de la función pulmonar en los asmáticos adultos así como una detención del crecimiento pulmonar y de la función pulmonar en niños empezó a acumularse en los años 80\(^1\).

Los pacientes asmáticos pierden función pulmonar de un modo más rápido que los individuos normales, como lo demostraron Peat y cols\(^4\), al observar que el VEF\(_1\) de los asmáticos descendía con la edad a un ritmo mayor que en los individuos normales (50 versus 35 ml por año) en un seguimiento de 18 años. Esta declinación puede hacerse irreversible, como ha sido comunicado por varios autores\(^1\)\(^3\)\(^4\), y está relacionada con la duración del asma\(^1\).

La pérdida irreversible del VEF\(_1\); en los asmáticos se ha relacionado con el desarrollo de remodelación del árbol respiratorio, que está en estrecha relación con la inflamación de las vías aéreas presente en el asma. Si esta hipótesis es correcta, el tratamiento precoz con corticosteroïdes inhalados debería prevenir la declinación acelerada del VEF\(_1\), y mejorar los síntomas e historia natural de la enfermedad.

Terapéutica para prevenir la remodelación de las vías aéreas. Precocidad de su empleo

Un hecho importante a considerar es que la inflamación de las vías aéreas se ha constatado en el asma diagnosticada por primera vez\(^2\).

Agertoft y cols\(^1\)\(^3\), Haathela\(^1\) y Van Essen-Zandvoort\(^1\)\(^2\) en niños, comunicaron que la introducción precoz de corticoides inhalados en asmáticos recién diagnosticados, producía una mejoría mayor en la función pulmonar, que su incorporación años más tarde, o el empleo como tratamiento de sólo un broncodilatador adrenérgico \(\beta_2\) agonista. Agertoft incluso señaló que 2 años era el límite máximo conveniente después del diagnóstico para iniciar los corticosteroides inhalados, y obtener un efecto exitoso sobre la declinación del VEF\(_1\).

Un resultado semejante fue observado por Dompelin y cols\(^1\)\(^3\) en un estudio de 4 años de duración en asmáticos adultos.

Sin embargo, estas evidencias de un efecto beneficioso de los esteroides en la declinación del VEF; y por ende en la remodelación de las vías aéreas, no fue aceptado, porque ningún estudio sobrepasaba los 5 años de seguimiento, período que se estimaba como el mínimo para darles una significancia estadística.

El estudio CAMP (Children Asthma Management Program), fue programado para contar con la incógnita anterior, para lo cual comparó el efecto de Budesonida, Nedocromil y placebo en el asma infantil persistente y moderado\(^1\)\(^4\) con una demora del diagnóstico de hasta 5 años.

Como el asma infantil se asocia a una disminución del crecimiento pulmonar, CAMP fue diseñado para evaluar en niños de 5 a 12 años de edad, si un tratamiento prolongado (4 a 6 años) con Budesonida (200 \(\mu\)g c/12 h) o Nedocromil (8 mg c/12 h), producía una mejora de la función pulmonar (incremento del VEF\(_1\); post uso de un broncodilatador adrenérgico \(\beta_2\) agonista), en comparación a Salbutamol y placebo.

El objetivo primario del estudio fue evaluar el crecimiento pulmonar, medido por cambios del VEF\(_1\) expresado como porcentaje del valor teórico después del uso de un broncodilatador adrenérgico \(\beta_2\) agonista en aerosol. Los objetivos secundarios eran: obtener una disminución de la hiperreactividad bronquial (PC\(_{20}\) a metacolina), número de exacerbaciones, hospitalizaciones, uso de terapéutica de rescate y mejora de los síntomas.

El estudio si bien logró las metas de los objetivos secundarios, no logró demostrar el primario, obtener una mejora funcional del VEF\(_1\); post broncodilatador, que asegurara un efecto sobre la remodelación de las vías aéreas, después de un tratamiento y observación prolongados.

La crítica que se puede hacer a este estudio, es que se aceptaron niños con un promedio de edad de 8,9 años, con un tiempo entre el diagnóstico e iniciación de los síntomas de 5 años, e incluso portadores de asma persistente moderada, todo lo cual hacía suponer una remodelación de las vías aéreas de mayor tiempo de duración que los 2 años sugeridos por Agertoft\(^1\)\(^3\).

El estudio START (Inhaled Steroid Treatment As Regular Therapy in early asthma)\(^1\)\(^5\), de tipo doble ciego y randomizado, que comprendió 3.568 pacientes que recibieron placebo y 3.597 tratados con budesonida, aceptó solo individuos con asma persistente leve, con un VEF\(_1\) mayor del 60% pre y 80% post broncodilatador \(\beta_2\)
Estrategia terapéutica para prevenir la remodelación de las vías aéreas - E. Carrasco C.

adrenérgico. Incluyó asmáticos con menos de 2 años de duración, que no hubieran recibido un tratamiento previo regular con glucocorticosido.

Los pacientes tenían entre 5 y 66 años de edad, correspondían a 32 países, y fueron tratados con budesonida, 400 ó 200 µg diarios (niños menores de 11 años) por 3 años, seguido de un período abierto de 2 años con Budesonida. El objetivo primario fue observar el tiempo transcurrido desde su ingreso al estudio y al primer evento asmático severo (hospitalización o tratamiento con esteroides sistémicos), y el secundario: observar una mejoría del VEF₁ post inalación de un agonista adrenérgico β₂ en aerosol.

Los pacientes comenzaron con un VEF₁ promedio pre-broncodilatador de 86,45% (95% IC: 65,2 a 109,9%), y un VEF₁ promedio post broncodilatador de 96,31% (95% IC: 79,76% a 118,18%).

El tratamiento con Budesonida mejoró significativamente el porcentaje del VEF₁ en relación al valor calculado pre y post broncodilatador. El cambio promedio desde la línea base para el VEF₁ post-broncodilatador a 1 y 3 años fue de 0,62% y -1,79% para Budesonida y de -2,11% y -2,68% para el placebo (p < 0,001). La diferencia promedio en el VEF₁ post broncodilatador entre budesonida y placebo a los 3 años fue de 0,88% (p < 0,005). La declinación en el VEF₁ post-broncodilatador en ambos grupos de tratamiento fue más marcada en los hombres, fumadores activos y pacientes mayores de 18 años (p < 0,001 para todos), y el efecto más pequeño del tratamiento con Budesonida se observó sorprendentemente en los adolescentes cuando se les comparó con niños y adultos (Tabla 1).

Los primeros 3 años del estudio START demostraron que el tratamiento con una dosis baja de Budesonida una vez al día, mejoró la función pulmonar pre y post broncodilatador en los pacientes con asma persistente leve de iniciación reciente, pero que a pesar de ello, persistió en el tiempo algo de pérdida de la función pulmonar. Esto podría deberse a la existencia de un componente sensible e insensible al esteroide inhalado en los cambios estructurales de las vías aéreas asociados con el asma, o alternativamente a que para obtener una inhibición completa de la declinación del VEF₁ se requiere de una dosis del corticoide inhalado mayor que la empleada en el estudio.

Paralelamente al efecto sobre la remodelación de las vías aéreas, el corticoide demostró producir una disminución de un 50% del riesgo de tener una exacerbación severa y de un 30% en el uso de corticoides sistémicos, lo que significa un buen cumplimiento del objetivo primario.

Precocidad del uso de los corticoides

La pobre respuesta a los corticoides inhalados de la remodelación de las vías aéreas en pacientes asmáticos crónicos, como lo han atestiguado los estudios histopatológicos de biopsias bronquiales, sumado a lo temprano de la aparición de la remodelación de las vías aéreas, han puesto de relieve la necesidad de que el tratamiento esteroideal se inicie lo más precozmente posible, apenas se haya hecho el diagnóstico. Este tratamiento debería mantenerse indefinidamente, como lo sugieren los trabajos que han revelado que los beneficios asociados con la terapia esteroideal inhalatoria se pierden al discontinuarlos.

Basados en estos principios, GINA en 1998 y en 2002, sabiendo que el asma inicial es mayoritariamente leve, han propuesto iniciar el tratamiento con corticoesteroídes inhalados en el asma persistente leve, definido como aquel que tiene síntomas más de una vez a la semana, pero menos de una vez al día, con síntomas nocturnos menos de dos veces al mes, y con un VEF₁ < 80% del valor teórico. Esta indicación estaría muy de acuerdo con los resultados recientes del estudio START.

Como el asma se inicia mayoritariamente en la niñez, el tratamiento precoz, en esta etapa de la vida, aseguraría una eficiente prevención de la remodelación de las vías aéreas, como lo han sugerido recientemente Holt y cols.

Tabla 1. Resultados del Estudio START

<table>
<thead>
<tr>
<th></th>
<th>Budesonida 1 año</th>
<th>Budesonida 3 años</th>
<th>Placebo 1 año</th>
<th>Placebo 3 años</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio %</td>
<td>-1,79</td>
<td>-2,11%</td>
<td>-2,68</td>
<td>-0,01</td>
<td></td>
</tr>
<tr>
<td>VEF₁ post β₂</td>
<td>0,62%</td>
<td>-1,79%</td>
<td>-2,11%</td>
<td>-2,68%</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Diferencia del VEF₁ entre Budesonida y placebo a 3 años</td>
<td>0,88%</td>
<td>< 0,005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modificado de Pauwels R et al

BIBLIOGRAFÍA

2.- GREENOUGH A, LOFTUS BG, PIRVAL J, PRICE J F.

